

Diagnosis of Amyloidosis

Maria M. Picken MD, PhD
Loyola University Medical Center
Chicago
mpicken@lumc.edu

Amyloid: what is it and why it forms

Name = misnomer: "amyloid" means starch* but deposits of amyloid contain predominantly protein which became mis-folded

Amyloidoses = amyloid diseases

amylum = starch in Latin, ἄμυλον amylon = starch in Greek

^{*} the name *amyloid* comes from the early mistaken identification by Rudolf Virchow (XIX century) of the substance as starch based on crude iodine-staining techniques

Amyloidoses – protein folding disorders

α helix

Fibrillogenesis
Conformational shift to
β-pleated sheet 2° structure

β pleated sheet

hydrophobic, insoluble
non-functional
resistant to degradation
sticky (prone to aggregation)
extracellular
affinity to Congo red stain
fibrillar (by electron microscopy)

non-branching fibrils by electron microscopy

Congo red positivity with green birefringence under polarized light

Amyloidoses – protein folding disorders

protein quality control systems: intracellular (proteasomes*) extracellular (macrophages) Increased concentration mutations Intrinsic instability Older age proteotoxicity Proteolytic cleavage misfolded protein protofibril precursor protein mature fibrils

Proteasomes = protein complexes which degrade unneeded or damaged proteins by proteolysis Proteasomes are part of a major mechanism by which cells degrade misfolded proteins

Pathogenesis of hereditary amyloidosis

Hereditary: ATTR, AFib, AApoAl, All, C-III...

Amyloidosis derived from transthyretin: ATTR

- The most common hereditary amyloidosis in the US
- TTR circulates as tetramer,
- transport of thyroxin & retinol (vitamin A)
- inherited mutation destabilizes tetramer
- >95% liver; choroid plexus, eye
- >100 mutations

NORMAL PRODUCTION OF

Hereditary: ATTR

Amyloidosis derived from transthyretin: ATTR

polyneuropathies (sensory, autonomic), cardiac gastrointestinal, some kidneys

The most common hereditary amyloidosis in the US

~4% of African Americans (TTR V122I)

Variable penetrance Late onset in some Family history often missing **Can MIMICK AL – danger of misdiagnosis**

Carpal tunnel bilateral

enlarged heart

* deposits of amyloid

ATTRwt (wild type):

normal (wild type) transthyretin is prone to fibrillogenesis at older age

protein quality control systems are less effective at older age...

- cardiac amyloid at old age
"cardiac Alzheimer"
Formerly SSA: senile systemic amyloidosis males,
under-diagnosed – 25% of octogenarians risk factors?
prevention?

How to diagnose amyloidosis?

1. Detection:

- ALL amyloids are Congo red positive (

2. Typing of amyloid protein

DIAGNOSIS:

kidney, cardiac, peripheral nerves, other sites laboratory tests to support the diagnosis but note make it

Routine stain: extracellular "amorphous" deposits, not-specific for amyloid

Diagnosis = Congo* red stain with green birefringence under polarized light ["apple green" birefringence]

think - amyloid

order Congo red stain

Amyloid is fibrillary only by electron microscopy

Differential diagnosis

of proteinuria/nephrotic syndrome in adults:

- 1. Focal and Segmental Glomerular Sclerosis/Minimal change disease
- 2. Membranous nephropathy
- 3.Diabetes
- 4.Amyloidosis!!!

Cardiac amyloidosis – heart failure, arrhythmia, long list of differential Polyneuropathy – sensory and autonomic disturbances, long list of differential Amyloid deposits are unevenly distributed in tissues

"Surrogate" site biopsy

Amyloid can be detected in subcutaneous fat

Fat biopsy typically from periumbilical abdomen ("surrogate site") for diagnosis and screening of patients at risk

Amyloid detection in fat:

Sensitivity highly variable 54-93% Specificity: 93-100%

Affected organ – best yield

Fine et al, 2014: ATTR, cardiac versus non-cardiac tissue sampling:

biopsy	all	Familial ATTR	Wild type senile ATTR
Fat aspirate	225/106+ 47%	141/94+ 67%	84/12+ 14%
Bone marrow	164/60+ 37%	100/41+ 41%	64/19+ 30%
heart	131/131+ 100%	42/42+ 100%	89/89+ 100%
Sural nerve	54/45+ 83%	54/45+ 83%	0

Fat aspiration was the most commonly performed followed by bone marrow biopsy. Other: rectum, kidney, carpal ligament, liver, small intestine, sural nerve

Pathology of Familial amyloidoses:

- 1. Detection of amyloid in the index patient
 - lack of a family history
 - new mutation
- 2. Screening of family members/known carriers
- 3. Staging, organ involvement

Thank you
Questions?
mpicken@lumc.edu

Early diagnosis of amyloidosis = biggest challenge

Increased awareness and education

Clinical suspicion...

Pathologic suspicion... second opinion

Patients' perspective...

